MPU6050 GYROSCOPE/ACCELEROMETER

Description

  • World’s first integrated 6-axis motion tracking device combining a 3-axis gyroscope and a 3-axis accelerometer
  • Digital Motion Processor™ (DMP)
  • Dedicated I2C sensor bus
  • Run-time calibration firmware
  • Three 16-bit analog-to-digital converters (ADCs) for digitizing the gyroscope outputs
  • Three 16-bit ADCs for digitizing the accelerometer outputs
  • Easy to use and set up

Motion tracking is becoming a must-have function in many devices due to the enormous value it adds to the end user experience. In smartphones, it is used in gesture commands for applications and phone control, enhanced gaming, augmented reality, panoramic photo capture and viewing, as well as pedestrian and vehicle navigation. With its ability to precisely and accurately track user motions, motion tracking technology can convert handsets, tablets and almost anything into powerful 3D intelligent devices that can be used in applications ranging from health and fitness monitoring to augmented reality interfaces. Key requirements for motion interface-enabled devices are small package size, low power consumption, high accuracy and repeatability and high shock tolerance. Its I2C port makes it easy to interface to your Arduino-compatible board with only 3 cables (including interrupt). The companion libraries, with implemented filtering and quaternions calculation, make it very easy to set up and integrate the accelerometer/gyroscope to your projects.

Supply voltage +3.3 to +5 VDC (internal low drop-out voltage regulator)
Gyroscope ranges ± 250, 500, 1000, 2000 °/s
Accelerometer ranges ±2, ±4, ±8, ±16 g
Communication Standard I2C communications protocol
Gyro sensitivity 131 LSBs/dps
A/D converters Built-in 16 bit A/D converters, 16-bit data outputs
Sensors Tri-Axis angular rate sensor (gyro) and Tri-Axis accelerometer
Operating temperature -40 to 105 ℃

Easy to connect, with only five cables. You can pin the module on the breadboard and use the male to male jumper cables, or use the male to female jumper cables and connect the module directly to the Arduino-compatible board.

To supply voltage to the board, connect the +5v pin to the 5v power pin and the GND pin to the GND pin. Connect SCL to A5 and SDA to A4 which are the default I2C pins on the Arduino Uno. Connect the INT to pin 2.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
//*** Reviewed by Dr. Mangus from Mango Labs ***
// –HELLO WORLD – MPU6050 tst —
// I2C device class (I2Cdev) demonstration Arduino sketch for MPU6050 class using DMP (MotionApps v2.0)
// 6/21/2012 by Jeff Rowberg <jeff@rowberg.net>
// Updates should (hopefully) always be available at https://github.com/jrowberg/i2cdevlib
//
// Changelog:
//      2013-05-08 - added seamless Fastwire support
//                 - added note about gyro calibration
//      2012-06-21 - added note about Arduino 1.0.1 + Leonardo compatibility error
//      2012-06-20 - improved FIFO overflow handling and simplified read process
//      2012-06-19 - completely rearranged DMP initialization code and simplification
//      2012-06-13 - pull gyro and accel data from FIFO packet instead of reading directly
//      2012-06-09 - fix broken FIFO read sequence and change interrupt detection to RISING
//      2012-06-05 - add gravity-compensated initial reference frame acceleration output
//                 - add 3D math helper file to DMP6 example sketch
//                 - add Euler output and Yaw/Pitch/Roll output formats
//      2012-06-04 - remove accel offset clearing for better results (thanks Sungon Lee)
//      2012-06-01 - fixed gyro sensitivity to be 2000 deg/sec instead of 250
//      2012-05-30 - basic DMP initialization working
 
/* ============================================
I2Cdev device library code is placed under the MIT license
Copyright (c) 2012 Jeff Rowberg
 
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
 
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
===============================================
*/
 
// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"
 
#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file
 
// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
#endif
 
// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high
 
/* =========================================================================
   NOTE: In addition to connection 3.3v, GND, SDA, and SCL, this sketch
   depends on the MPU-6050's INT pin being connected to the Arduino's
   external interrupt #0 pin. On the Arduino Uno and Mega 2560, this is
   digital I/O pin 2.
 * ========================================================================= */
 
/* =========================================================================
   NOTE: Arduino v1.0.1 with the Leonardo board generates a compile error
   when using Serial.write(buf, len). The Teapot output uses this method.
   The solution requires a modification to the Arduino USBAPI.h file, which
   is fortunately simple, but annoying. This will be fixed in the next IDE
   release. For more info, see these links:
 
   http://arduino.cc/forum/index.php/topic,109987.0.html
   http://code.google.com/p/arduino/issues/detail?id=958
 * ========================================================================= */
 
 
 
// uncomment "OUTPUT_READABLE_QUATERNION" if you want to see the actual
// quaternion components in a &#91;w, x, y, z&#93; format (not best for parsing
// on a remote host such as Processing or something though)
//#define OUTPUT_READABLE_QUATERNION
 
// uncomment "OUTPUT_READABLE_EULER" if you want to see Euler angles
// (in degrees) calculated from the quaternions coming from the FIFO.
// Note that Euler angles suffer from gimbal lock (for more info, see
// http://en.wikipedia.org/wiki/Gimbal_lock)
//#define OUTPUT_READABLE_EULER
 
// uncomment "OUTPUT_READABLE_YAWPITCHROLL" if you want to see the yaw/
// pitch/roll angles (in degrees) calculated from the quaternions coming
// from the FIFO. Note this also requires gravity vector calculations.
// Also note that yaw/pitch/roll angles suffer from gimbal lock (for
// more info, see: http://en.wikipedia.org/wiki/Gimbal_lock)
#define OUTPUT_READABLE_YAWPITCHROLL
 
// uncomment "OUTPUT_READABLE_REALACCEL" if you want to see acceleration
// components with gravity removed. This acceleration reference frame is
// not compensated for orientation, so +X is always +X according to the
// sensor, just without the effects of gravity. If you want acceleration
// compensated for orientation, us OUTPUT_READABLE_WORLDACCEL instead.
//#define OUTPUT_READABLE_REALACCEL
 
// uncomment "OUTPUT_READABLE_WORLDACCEL" if you want to see acceleration
// components with gravity removed and adjusted for the world frame of
// reference (yaw is relative to initial orientation, since no magnetometer
// is present in this case). Could be quite handy in some cases.
//#define OUTPUT_READABLE_WORLDACCEL
 
// uncomment "OUTPUT_TEAPOT" if you want output that matches the
// format used for the InvenSense teapot demo
//#define OUTPUT_TEAPOT
 
 
 
#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;
 
// MPU control/status vars
bool dmpReady = false// set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer&#91;64&#93;; // FIFO storage buffer
 
// orientation/motion vars
Quaternion q;           // &#91;w, x, y, z&#93;         quaternion container
VectorInt16 aa;         // &#91;x, y, z&#93;            accel sensor measurements
VectorInt16 aaReal;     // &#91;x, y, z&#93;            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // &#91;x, y, z&#93;            world-frame accel sensor measurements
VectorFloat gravity;    // &#91;x, y, z&#93;            gravity vector
float euler&#91;3&#93;;         // &#91;psi, theta, phi&#93;    Euler angle container
float ypr&#91;3&#93;;           // &#91;yaw, pitch, roll&#93;   yaw/pitch/roll container and gravity vector
 
// packet structure for InvenSense teapot demo
uint8_t teapotPacket&#91;14&#93; = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, 'r', 'n' };
 
 
 
// ================================================================
// ===               INTERRUPT DETECTION ROUTINE                ===
// ================================================================
 
volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
    mpuInterrupt = true;
}
 
 
 
// ================================================================
// ===                      INITIAL SETUP                       ===
// ================================================================
 
void setup() {
    // join I2C bus (I2Cdev library doesn't do this automatically)
    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
        Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif
 
    // initialize serial communication
    // (115200 chosen because it is required for Teapot Demo output, but it's
    // really up to you depending on your project)
    Serial.begin(115200);
    while (!Serial); // wait for Leonardo enumeration, others continue immediately
 
    // NOTE: 8MHz or slower host processors, like the Teensy @ 3.3V or Arduino
    // Pro Mini running at 3.3V, cannot handle this baud rate reliably due to
    // the baud timing being too misaligned with processor ticks. You must use
    // 38400 or slower in these cases, or use some kind of external separate
    // crystal solution for the UART timer.
 
    // initialize device
    Serial.println(F("Initializing I2C devices..."));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);
 
    // verify connection
    Serial.println(F("Testing device connections..."));
    Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));
 
    // wait for ready
    Serial.println(F("nSend any character to begin DMP programming and demo: "));
    while (Serial.available() && Serial.read()); // empty buffer
    while (!Serial.available());                 // wait for data
    while (Serial.available() && Serial.read()); // empty buffer again
 
    // load and configure the DMP
    Serial.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();
 
    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip
 
    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);
 
        // enable Arduino interrupt detection
        Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(digitalPinToInterrupt(INTERRUPT_PIN), dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();
 
        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;
 
        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial.print(F("DMP Initialization failed (code "));
        Serial.print(devStatus);
        Serial.println(F(")"));
    }
 
    // configure LED for output
    pinMode(LED_PIN, OUTPUT);
}
 
 
 
// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================
 
void loop() {
    // if programming failed, don't try to do anything
    if (!dmpReady) return;
 
    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        // other program behavior stuff here
        // .
        // .
        // .
        // if you are really paranoid you can frequently test in between other
        // stuff to see if mpuInterrupt is true, and if so, "break;" from the
        // while() loop to immediately process the MPU data
        // .
        // .
        // .
    }
 
    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();
 
    // get current FIFO count
    fifoCount = mpu.getFIFOCount();
 
    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        Serial.println(F("FIFO overflow!"));
 
    // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
 
        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
         
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;
 
        #ifdef OUTPUT_READABLE_QUATERNION
            // display quaternion values in easy matrix form: w x y z
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            Serial.print("quatt");
            Serial.print(q.w);
            Serial.print("t");
            Serial.print(q.x);
            Serial.print("t");
            Serial.print(q.y);
            Serial.print("t");
            Serial.println(q.z);
        #endif
 
        #ifdef OUTPUT_READABLE_EULER
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetEuler(euler, &q);
            Serial.print("eulert");
            Serial.print(euler[0] * 180/M_PI);
            Serial.print("t");
            Serial.print(euler[1] * 180/M_PI);
            Serial.print("t");
            Serial.println(euler[2] * 180/M_PI);
        #endif
 
        #ifdef OUTPUT_READABLE_YAWPITCHROLL
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
            Serial.print("yprt");
            Serial.print(ypr[0] * 180/M_PI);
            Serial.print("t");
            Serial.print(ypr[1] * 180/M_PI);
            Serial.print("t");
            Serial.println(ypr[2] * 180/M_PI);
        #endif
 
        #ifdef OUTPUT_READABLE_REALACCEL
            // display real acceleration, adjusted to remove gravity
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            Serial.print("arealt");
            Serial.print(aaReal.x);
            Serial.print("t");
            Serial.print(aaReal.y);
            Serial.print("t");
            Serial.println(aaReal.z);
        #endif
 
        #ifdef OUTPUT_READABLE_WORLDACCEL
            // display initial world-frame acceleration, adjusted to remove gravity
            // and rotated based on known orientation from quaternion
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
            Serial.print("aworldt");
            Serial.print(aaWorld.x);
            Serial.print("t");
            Serial.print(aaWorld.y);
            Serial.print("t");
            Serial.println(aaWorld.z);
        #endif
     
        #ifdef OUTPUT_TEAPOT
            // display quaternion values in InvenSense Teapot demo format:
            teapotPacket[2] = fifoBuffer[0];
            teapotPacket[3] = fifoBuffer[1];
            teapotPacket[4] = fifoBuffer[4];
            teapotPacket[5] = fifoBuffer[5];
            teapotPacket[6] = fifoBuffer[8];
            teapotPacket[7] = fifoBuffer[9];
            teapotPacket[8] = fifoBuffer[12];
            teapotPacket[9] = fifoBuffer[13];
            Serial.write(teapotPacket, 14);
            teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
        #endif
 
        // blink LED to indicate activity
        blinkState = !blinkState;
        digitalWrite(LED_PIN, blinkState);
    }
}
  1. In this example we are connecting:
    Arduino PU6050
    D2     —  INT
    A4     —  SDA
    A5     —  SCL
    GND —  GND
    5V     —  VCC
  2. Download and install the Arduino environment from here or use the web editor.
  3. Download the Arduino library I2Cdev here and the MPU6050 library here.
  4. Unzip and paste the folder in the Arduino libraries folder. It’s in the same location as your default sketches. To find the sketchbook location, go to File /Preferences.
  5. Download this sketch and open, or open the Arduino environment and copy the code into a blank sketch.
  6. Connect your board to your computer with the included USB cable.
  7. Select your board in Tools / Board / Arduino Uno.
  8. Select your port in Tools / Port / COM# (Arduino Uno). This may be slightly different depending on your operating system.
  9. Upload by pressing the arrow in the circle to the upper left.
  10. To open the serial monitor, press the magnifying glass icon on the upper right.
  11. Set the baud rate to 115200 on the lower right.
  12. Type any letter into the text box and press Send to activate communication.
  13. After some seconds of initial calibration and setup you should see the already filtered yaw, pitch and roll angles scrolling down. They should change when you move the board.